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ABSTRACT 

Detection of sub-surface optical layers in marine waters has important applications in fisheries management, 
climate modeling, and decision-based systems related to military operations. Concurrent changes in the 
magnitude and spatial variability of remote sensing reflectance (R„) ratios and submerged scattering layers 
were investigated in coastal waters of the northern Gulf of Alaska during summer of 2002 based on high 
resolution and simultaneous passive (MicroSAS) and active (Fish Lidar Oceanic Experimental, FLOE) optical 
measurements. Principal Component Analysis revealed that the spatial variability of total lidar backscattering 
signal (S) between 2.1 and 20 m depth was weakly associated with changes in the inherent optical 
properties (lOPs) of surface waters. Also based on a 250-m footprint, the vertical attenuation of S was 
inversely related to the lOPs (Spearman Rank Correlation up to -0.43). Low (arithmetic average and 
standard deviation) and high (skewness and kurtosis) moments of Rn(443)/Rr,(490) and RrsfSOSJ/RrsfSSS) 
ratios were correlated with vertical changes in total lidar backscattering signal (S) at different locations. This 
suggests the use of sub-pixel ocean color statistics to infer the spatial distribution of sub-surface scattering 
layers in coastal waters characterized by stratified conditions, well defined S layers (i.e., magnitude of S 
maximum comparable to near surface values), and relatively high vertically integrated phytoplankton 
pigments in the euphotic zone (chlorophyll a concentration ^150 mg m" 2). 

© 2010 Elsevier Inc. All rights reserved. 

1. Introduction 

Remote sensing reflectance above the sea surface (R^ (A, 0+), 
where A is the wavelength) and total lidar backscattering signal (S 
(z)) are theoretically connected in two ways. First, both depend on the 
volume backscatter function (1 (6), where 0 is the scattering angle. R„ 
is directly proportional to backscattering coefficient [bb (A.)), which is 
an inherent optical property (IOP) equal to the integral of/< over all 
scattering angles greater than 0.5n.The amplitude {A^ (z)) of the total 
volume lidar backscattering is proportional to ft (n). The depth 
dependence of the lidar measurement is given by 

S(z) = /V(z)e (-2<u) m 
where yfy (z) is the sum of the volume backscattering (/*) contributions 
due to particulars (e.g., phytoplankton, zooplankton, fish) and dis- 
solved (e.g., seawater) components, and a is the vertically attenuation 

* Corresponding author. Geosystems Research. Mississippi State University, MS 
39529. USA 

E-mail address: mmontesi8>ngi.msstate.edu (MA Montes-Hugo). 
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coefficient of lidar volume backscattering and independent of 
depth. Note that a is equal to the vertically diffuse attenuation of 
downward irradiance, Kd, if the lidar field of view is relatively wide 
(Gordon, 1982). The 17mrad field of view of the lidar generally 
satisfied this condition (Churnside et al., 1998). Second, R„ is inversely 
related to a, the total absorption coefficient (dissolved and paniculate 
optical constituents), an IOP with major influence on Kd, and therefore 
responsible for lidar backscattering attenuation along the vertical 
component. 

Current techniques to derive vertical shape of optical constituents 
based on Rrs have large uncertainties (-70%) or require prior 
knowledge of depth weighting functions (Piskozub et al., 2008: 
Zanaveld, 1982). As stated by Gordon and Brown (1975), the use of/?,, 
(\, 0+) spectra to infer vertical profiles of lOPs is impossible without a 
priori information. For example, even in the simple case of a single 
sub-surface peak of lOPs with a Gaussian profile, not all fitting 
parameters (i.e., amplitude, depth and width of peak) could be 
retrieved based solely on Rn (A, 0+ ) measurements. 

The use of Look-Up Tables (LUTs) of regionally and seasonally 
averaged lOPs (i.e., weighting averages), including dependence of 
depth, has been one approach to use surface observations of R^- 
derived chlorophyll a concentration (chl a) to obtain information 
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about the vertical structure of phytoplankton light absorption 
pigments in marine waters (Platt et al., 1988; Sathyendranath et al., 
1995, hereafter SP method). In this case, different vertical profiles of 
lOPs are derived from ship-based chl a measurements by fitting to 
Gaussian curves. This technique has been a step forward to elucidate 
large-scale differences in the vertical structure of lOPs in case 1 waters 
(i.e., those where optical properties are defined by phytoplankton and 
covarying components). However, the SP method does not exploit 
other spatial statistical metrics (e.g., standard deviation, skewness. 
kurtosis) beyond the calculation of the arithmetic average of vertical 
distribution of lOPs and associated ocean color signatures derived 
from remote sensors. 

The higher moments related to "peakedness" (kurtosis) and 
"symmetry" (skewness) of the probability distribution have been 
used in the ocean color community to characterize surface peaks of 
light-absorbing particulates (e.g., skewness and kurtosis are relatively 
high in Trichodesmium blooms) (Westeberry & Siegel. 2006). Based 
on an analysis of the vertical microscale distributions of fluorescence, 
Mitchell et al. (2008) concluded that kurtosis and skewness of 
phytoplankton patch patterns were determined by multiple mechan- 
isms (e.g., active migration of cells and formation of organic 
aggregates). Therefore, for a population of pixels, the statistical 
distribution of R„ (A, 0+) ratios can potentially provide information 
about underwater perturbations of light fields. 

In this study we performed aerial surveys using coincident passive 
and active optical measurements in coastal waters of the northern 
part of the Gulf of Alaska (NGOA) in order to answer the following 
scientific questions: How does the vertical structure of optical 
properties affect the spatial statistics of passive ocean color data 
measured above the ocean surface? Is a single lidar frequency 
sufficient to allow a 'bridge' with above-water radiance observations 
collected by multi-wavelength passive optical systems? 

2. Methods 

2.1. Study area 

Eastern shelf waters of Afgonak/Kodiak Islands (57.48°-58.04° N. 
152.91°-151.67° W, Fig. 1) during late summer (August 17, 2002) are 
characterized by a well-developed pycnocline (median vertical density 
difference = 0.025 kg m "4 between 0 and 20 m in depth) (Appendix A. 
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Fig. 1. Study area and aerial surveys. Concurrent FLOE and MicroSAS measurements 
(solid dots), case studies with HS (green dots) and IS (red dots) lidar waveforms 
(Table 3). Lidar data shown in Fig. 2 (blue cross). I: Afgonak Island, 2: Kodiak Island. 
3: Marmot Bay, 4: Whale Island. 5: Spruce Island, 6: Chiniak Bay. 

Fig. Alb) except in those areas influenced by local topographic 
upwelling (e.g., at the entrance of the Bays) or in particular regions 
previously vertically mixed by the passage of storms (Montes-Hugo 
et al., 2005). Likewise, greater phytoplankton concentrations as a 
function of depth were commonly observed just above the pycnocline 
depth as inferred from drastic vertical increase of CTD-derived chl a 
(>2 mg m ") associated with major depth changes on seawaterdensity 
(>0.01 kgm 4) (Appendix A Fig. Alb). Therefore, these environments 
offer a mosaic of case studies characterized by waters with different 
vertical stratifications and consequently different vertical structures of 
optical properties and biogeochemical variables. 

22. Aerial surveys and flight mission settings 

Airborne R^ (A, 0+) and S (z) measurements were obtained 
between 12:54 and 14:30 pm local time and over waters deeper 
(>50m depth) than penetration depth of the lidar system (Fig. l).To 
avoid bottom-related reflectance and lidar backscattering contribu- 
tions, only measurements over deep waters (i.e., >50m bottom 
depth) were analyzed. Optimal flight weather conditions (i.e., cloud- 
free skies, wind speed < 4 ins ') were checked a priori based on local 
weather forecast (http://www.wunderground.com/) to maximize the 
number of comparisons between passive and active optical measure- 
ments. For the aerial survey, the altitude and speed were 300 m and 
70 m s \ respectively. Based on these average flight characteristics, 
we collected a total of 3.0 x lO4 passive radiometric measurements 
(upwelling and downwelling) and 1.66 x 105 lidar shots along a total 
distance of 332 km during 83min. Airborne optical measurements 
were geo-located every 30 lidar shots (i.e., 1 s) during the full survey. 

2.3. Optical determinations aboard the airplane 

2.3.1. Passive measurements 
Upwelling radiance (Lu (A)) and downwelling irradiance 

(£d (A)"1"") were measured at 411. 443, 491, 509. 553, 665. and 
780 nm to approximately match bands 1 -7 of the spaceborne ocean 
color sensor SeaWiFS (Churnside 8J Wilson. 2008). The sensors (Micro 
Surface Acquisition System, MicroSAS, Satlantic) have bandwidths of 
10 nm. The upwelling radiance sensor has a typical saturation radiance 
of 5pWcm 2 nm ' and afield of view (FOV) of 3° (half angle) in air. 
Based on this FOV and a sampling rate of 6 observations per second, the 
pixel diameter of L„ MicroSAS measurements was 16 m (along-track) x 
200 m (across track). The MicroSAS irradiance sensor has a typical 
saturation irradiance of 300 uW cm 2 nm ' and a noise equivalent of 
2.5x10 3uWcm 2 nm '. The orientation of the MicroSAS sensors 
were orthogonal to the sea surface plane (i.e., Ly (A) and Ed (\)'"v>me 

were measured at 180° and 0° with respect to zenith). 

2.32. Active measurements 
Lidar backscattering measurements were obtained with a Fish 

Lidar Oceanic Experimental (FLOE) system (Churnside et al., 2001), 
looking down through a belly port of a twin-engine aircraft. FLOE 
detector was set up forward-looking and 15° off vertical to minimize 
specular reflections from the sea surface. In each lidar waveform, the 
sea surface was identified based on the large increase in signal when 
the pulse reached the surface. In this study, the lidar signature at the 
air-sea interface was clearly defined due to the absence of breaking- 
waves and fog. Hence, after eliminating the lidar propagation path 
in air (i.e., distance between airplane and sea surface), S can be 
computed for each lidar pulse from the vertical profiles of photo- 
cathode current by applying calibration factors related to optical 
system parameters (e.g., laser pulse energy, surface losses, receiver 
area, detector responsivity). The FLOE laser is linearly polarized and 
has beam divergence and receiver field of view of 17 mrad. 

The receiver is polarized in the orthogonal plane and sampled at a 
rate of 109 samples per second. The dynamic range of the receiver is 
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sufficient to allow S measurements to a depth of nearly 100 m in the 
clearest ocean waters. In our coastal study area, the greater 
attenuation of laser energy reduced FLOE penetration depth to 
~30m on average. The green (532 nm) laser source was pulsed 
with an energy of 100 mj, a pulse length of 15 ns, and a pulse 
repetition frequency of 30 Hz. This provides a pixel size of 5 m with an 
along-track spacing of about 2 m. The sampling vertical resolution 
into the water column was about 0.1 m. 

2.4. Quality control of airborne optical determinations 

In-situ airborne passive optical measurements were first screened to 
remove data affected by variable illumination caused by patchy cloud 
layers and by the presence of whitecaps. Additional filtering of optical 
data included the deletion of segments characterized by airplane turns 
(Fig. 1) and coinciding with drastic spatial changes on £_ and L_ 
magnitude due to changes on orientation of airborne sensors. 

Pixels affected by clouds were screened and removed from further 
processing by comparing field Ed (553)airpUn' values against modeled 
E_ (553) above the sea surface (£d (553)modd). Ed (553)•*"' estimates 
were computed based on a radiative transfer model (Hydrolight, 
Sequoia Scientific, Inc.) using local meteorological conditions reported 
by weather stations (visibility, sea level, atmospheric pressure, wind 
speed, relative humidity, Bob's P.C. Connection, Kodiak Island, Alaska, 
www.wunderground.com, precipitable water content, NOAA/CSD) or 
extracted from satellite imagery (e.g., total ozone from Total Ozone 
Mapping Spectrometer, TOMS) during the initial (21:54 GMT, August 
17th) and final (23:30 GMT, August 17th) stage of the flight survey. 
Solar zenith angle was calculated using a solar position calculator and 
based on date and location (University of Oregon, Solar radiation 
monitoring laboratory). The airmass type criterion for choosing 
aerosol composition was based on wind direction data provided by 
Kodiak Island weather station. Aerosol thickness during this study 
was very small (<0.04) (SeaWiFS-derived 9 km resolution, wave- 
length = 865 nm) and is consistent with the lack of aerosol contribu- 
tions due to volcanic plumes during this study (Alaska Volcano 
Observatory, http://puff.images.alaska.edu/pufLseries_airroutes/ 
Puff_20_years_1988.2008_seriesconc.mpg). 

Glint and foam contaminated pixels during airborne L_ measure- 
ments were screened based on Hydrolight simulations of L_ at 780 nm 
(L_ (780)model) using the following settings: 1) atmospheric conditions 
similar to E_ (553)model runs but wind speed equal to zero (i.e., flat 
ocean), and 2) the range of in sifu chl a values reported in this area (chl 
a = 0.05 to lOmgm 3). Magnitude of Lu (780) measured outside the 
theoretical radiometric interval resulting from the above constraints 
was considered contaminated with glint or foam contributions and 
removed from further processing. Water scattering and absorption 
coefficients were derived from Smith and Baker (1981), and particulate 
scattering and absorption coefficients were computed from the Gordon 
and Morel empirical equations (Gordon 8i Morel, 1983: Morel, 1991), 
and interpolated phytoplankton specific absorption coefficients 
reported by Prieur and Sathyendranath (1981). Only 11.8% of the 
original airborne data (i.e., 127 bins with 250-m resolution) corre- 
sponded to the ideal approximation 'clear skies and a glint-foam free 
ocean' based on modeled radiometric thresholds for E_ (553) 
(range= 106.9 to 109.5 uWcirT2nm   ') and L_ (780) (range = 4.87 
10^ to8.86 10  '(iWcm  'nm 

2.5. Atmospheric correction 

sr ')• 

A quasi-single-scattering approximation (Rayleigh-aerosol multi- 
ple scattering ignored) was used to relate water-leaving radiance (L*,) 
to cloud and glint-foam free Lu (Gordon et al., 1983): 

where f(A) is the diffuse transmittance of the atmosphere below the 
aircraft, and Lr. La and Lgum Ate the radiance contributions due to 
Rayleigh/Fresnel, aerosol, and glint, respectively. Lr is derived from 
radiance phase functions for water molecules that depend on incident 
solar angles (zenith and azimuth), and Fresnel reflectance estimates 
(Montes-Hugo et al., 2005). La was calculated over clearwater pixels 
where a minimum water-leaving radiance at 665 nm is expected: 

La = W(\,,\,)au(665)-M665)) 

W(\,\,) = e(MF1)(\)/F0(665) 

(3) 

(4) 

A„ = 665 nm and Af = 412. 443. 491. 509. and 553 nm. Assuming a 
maritime atmosphere, e is 1 (Gordon et al., 1983). F„(A) is the 
instantaneous extraterrestrial solar irradiance (ozone optical thick- 
ness = 0) (Neckel & Labs, 1984). 

Glint contribution to Lu after Hydrolight-based pre-screening of L_ 
measurements was quantified with a first-order adjustment by 
subtracting Lu (780) from L_ (Lee et al., 2001). Skylight path radiance 
contribution was not accurately quantified due to the lack of sky- 
looking radiance sensor but it was assumed small due to the relatively 
thin atmospheric layer between the airplane and the sea surface. In 
this study, ignoring atmospheric contributions to L_ may result in l.w 

overestimation of up to 70% in shorter wavelengths (e.g., A = 443 nm) 
due mainly to molecular backscattering, and 48% at longer wave- 
lengths (e.g., A = 553 nm) because of the larger influence of aerosols. 

Assuming a negligible attenuation of E_ due to the atmospheric 
path below the airplane, /?„ (A, 0,) was derived as L*, (A) divided by 
Ed (A)iirplJ•' (cosine of zenith angle = 1) (Montes-Hugo et al.. 2005). 
In case 1 waters, R„ (A, 0+) can be approximately related (-20% bias) 
to inherent optical properties of the water body with the following 
expression (Gordon et al., 1988): 

R_(X..0J«0.54R/Q 

R/Q = 0.095 {b„(\)/(b.(M + a(X.))} 

(5) 

(6) 

L_(\) = MM + La + t(MUM + L •glim (2) 

where bB includes light backscattering contributions due to seawater 
and particulars, a includes light absorption contributions due to 
seawater, colored dissolved organic matter and particulates, and R/Q 
is a shape distribution factor that is influenced by the light field 
geometry. 

2.6. Comparisons of optical parameters derived from passive and active 
airborne sensors 

One important goal of this study was to understand how 
information provided by passive and active optical sensors was 
related despite the differences in spatial (i.e., vertically integrated 
from MicroSAS versus vertically-resolved from FLOE) and spectral 
(e.g., multi-wavelength MicroSAS versus single-wavelength FLOE) 
resolution. 

Remote sensing reflectance is an apparent optical property (AOP) 
that is affected by light field angular characteristics such as solar 
zenith angle. Therefore, a more direct way to evaluate the effects of 
water characteristics on MicroSAS-derived Rn and FLOE-derived S 
measurements independently from illumination effects is to use R„ 
spectral bands and curvature ratios (Montes-Hugo et al., 2005). A 
preliminary sensitivity analysis suggested two main MicroSAS- 
derived variables: Rr5(443, 0+)/Rns(490, 0+) (hereafter R,) and R„ 
(508, 0+)/R„(553, 0+) (hereafter R2). Interestingly, R, is inversely 
related to the average size of particulates of a specific water parcel 
(Gordon & Morel, 1983) while R2 is inversely related to the 
concentration of pigmented particulates containing chlorophyll a 
(Montes-Hugo et al., 2005). 

The comparisons between passive and active optical measure- 
ments were organized according to three main questions: How do the 



MA Montes-Hugo et al. I Remote Sensing of Environment 114 (2010) 2584-2593 2587 

magnitude of MicroSAS and FLOE optical parameters vary? (I), How 
does a relate to MicroSAS-derived lOPs? (II), What is the depth of the 
lidar scattering layer having the largest influence on the magnitude 
and spatial variability of MicroSAS-derived lOPs and R,, ratios? (III). 

Regarding (I), we calculated the moments around the mean 
(arithmetic average, standard deviation, skewness and kurtosis) of 
the Rr, ratios and S. Skewness (</<) and kurtosis (T/) represent the third 
and fourth standardized moments (m), respectively: 

«|< = H3/<j3 

n = u«/a 

IV, =   ) <x-u)7(x)d* 

(7. 

.8 

(9) 

where u is the arithmetic average, <J is the standard deviation, x is the 
random variable, and fix) is the continuous univariate probability 
density function. Large i/< relative to a Gaussian curve (i/* = 0) 
corresponds with an 'excess' of signal that may be related to a greater 
concentration or composition of optical components (e.g., fish species 
and abundance in lidar waveforms). Likewise, high f] with respect to a 
Gaussian function (r/ = 3) means that a greater proportion of the 
variance is concentrated around the mean, and implies a more 
'homogeneous' origin of the optical signal. 

For each lidar profile, a was derived from the regression slope of 
neperian log-transformed S as function of depth after automatic and 
manual deletion of those 1 -m vertically integrated lidar returns where 
S increases with depth. In case where S increased with depth a was 
not calculated. Automatic pre-screening and QC of S waveforms was 
made by setting flags every 1-m depth and detecting positive 
differences of S with depth as the lidar signal propagates deeper in 
the water column. 

The horizontal patchiness of S (hereafter K) was derived from the 
slope of the log-transform power spectrum of vertically averaged S 
(from 2 to 20 m depth) as a function the log-transformed spatial 
frequency. The coefficient of variation of S (cv) was computed as the 
standard deviation of the signal without spatial integration divided by 
the arithmetic average of S. S parameters (i.e.. kurtosis. skewness. a, K, 

vertically integrated S, and cv) were computed using the full FLOE 
vertical resolution (i.e., 179 data points per profile) and between 2 
and 20 m depth to minimize surface effects caused by air bubbles and 
large noise contribution beyond lidar penetration depth (i.e., -10 
standard deviation above the lidar noise). 

To examine (II), bb and a coefficients were calculated from 
MicroSAS-derived R„ at the lidar wavelength. Only MicroSAS data 
corresponding to lidar profiles with monotonic decrease of S with 
depth were selected. An updated version of the quasi-analytical 
algorithm (QAA_v5) was used to convert Rp, into lOPs (Lee et al.. 
2009). Briefly, QAA_v5 protocol has the following calculation 
modules: 1) R„ just below the sea surface, 2) spectral shape of bb 

and paniculate backscattering (bbp (\)), 3) spectral shape ofa (A), and 
4) partition of a (A) in detritus and phytoplankton contributions. 
Based on the NOMAD validation dataset, QAA_v5 can retrieve a's in 
the visible range with a coefficient of determination greater than 0.9 
and root-mean square difference (log scale) smaller than 0.2 (Lee 
et al.. 2009). Once bb (532) and a (532) are derived, Kd (532) can be 
easily estimated for cloud-free skies (Gordon, 1989). 

To answer (111), we performed two different analyses. First, 
MicroSAS-derived IOPs were related to smoothed S curves using 
vertically integrated 1-m bins (J^S (zmax) = sum of the product 
Sxdz from vertical layer i to i + DZ, where zmax. dz and DZ are the 
upper limit of the integral, the depth differential, and the smoothing 
interval = 1 m, respectively). Lastly, the influence of different vertical 
shapes of S (z) on MicroSAS-derived R„ was examined based on the 

following contrasting cases: 1) 'exponential' versus 'non-exponential' 
decrease of £S (zmax) with depth, 2) 'deep' (i.e., > 11 m) versus 
'shallow' Yi S (zmax) maximum, 3) 'thick' (i.e., > 5 m) versus 'thin' Y.S 
(zmax) maximum, and 4) 'strong' (i.e., > 7 10 A m sr~') versus 'weak' 
Yi S (zmax) maximum. These binary categories are defined with respect 
to the median of the sample and considering profiles with only one Yi S 
(zmax) maximum peak between 3 and 20 m in depth.The magnitude of 
each YS (zmax) maximum (i.e.. largest peak height) is relative and 
defined with respect to a baseline delineated by the exponential decay 
of the background signal. The width of each YS (zmax) maximum is 
estimated at the base of the Gaussian-type peak and corresponds to the 
distance between two intersecting points made by the peak tails and the 
background signal. Notice that the final number of lidar profiles with 
different types of Y S (zmax) maximum was relatively small due to the 
reduced number of coincident FLOE-MicroSAS measurements without 
atmospheric interference (-10SS of original dataset). Although FLOE 
waveforms with a dominant negative exponential term were observed 
in numerous occasions (e.g., >500 bins), it was decided to use a number 
of observations comparable to those obtained in the 'non-exponential' 
YS (zmax) case study to achieve an even weighting during statistical 
comparisons. Post-comparisons of moments (low and high) around the 
mean between these lidar profile types and using all 'exponential' 
samples did not change observed differences between exponential and 
non-exponential lidar waveforms. 

2.7. Statistical analysis 

Passive and active airborne spectral optical products were 
aggregated into 250-m horizontal bins (i.e., 125 FLOE profiles, 22 
MicroSAS measurements) before performing spatial correlations and 
variance decomposition. The choice of 250-m bins was made for 
several reasons: 1) It is the best resolution of satellite ocean color 
sensors with relatively short (1 to several days) revisiting time (e.g.. 
MODIS), 2) The sample size per bin is relatively large (FLOE: 
N= 125x200. MicroSAS: N=360) for histograms and statistical 
tests, and 3) Smaller bin sizes would be more influenced by small- 
scale surface effects (e.g.. glint, bubbles due to wave breaking), 
producing more noise/signal since these surface contributions cannot 
be completely corrected. The sensitivity of the along-track variability 
of IOPs to horizontal changes of vertically integrated S (i.e.. YS 
(zmax)) was quantified using principal component analysis (PCA) 
(Pearson, 1901). The contribution of each variable to the first 3 
orthogonal axes (i.e.. those who explain ->80% of total variance) was 
interpreted based on the loading of each variable to each eigenvector 
(i.e., principal component or PC). Fraction of total variability explained 
by principal components decreases from PCI to PC3. For each 
eigenvector, the sign of the loading of each optical parameter was 
used to establish the sign of the correlation (i.e., direct or inverse) 
between MicroSAS and FLOE variables. The intensity of the relation- 
ships between MicroSAS and FLOE optical variables were measured 
using Spearman Rank non-parametric correlation coefficients (ps) 
(Spearman. 1904). Comparisons were only performed using a spatial 
lag equal to zero due to lidar data gaps (e.g., FLOE profiles between 
21:20 and 22:33 GMT) along the flight track. Correlations were also 
examined between different characteristics (amplitude, g,, depth, g2, 
and width, g3) of S waveforms having a single sub-surface peak. 
Assuming a Gaussian model (G), the relationship between gl, g2 and 
g3 is: 

C(z) = g,e -0 5«*-fcl/fcl' (10) 

The amplitude coefficient is sometimes expressed as h/(2n g3), 
where h is the total vertically integrated value of the property above a 
baseline (Millan-Nunez et al.. 1997). 
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The significance of change in the averaged spectral ratios and lidar- 
derived parameters with different vertical S distributions (see 
Section 2.6) was evaluated at a confidence interval of probability of 
95% and 99% and based on t-Student comparisons with 1 -tail. The null 
hypothesis was u<gnM,p ,) = n<groiJp 2), with group 1,2...n equal to 
different subsets of optical data corresponding to pre-defined S (z) 
clusters. Change of skewness and kurtosis in each dataset was 
measured with respect to a Gaussian distribution, t// or 77 were 
significant with a 5% error (Type I) when their absolute magnitude 
was greater than two standard errors of <\i (ses = v/6/N, where 
N = number of observations) and r) (sek = ,/24/N), respectively 
(Tabachnick & Fidell. 1996). Differences in the coefficient of variation 
ofSperbin between two case studies with Nobservations (i.e., Nl and 
N2) were examined by comparing a pair of proportions (i.e., p1 and 
p2) with a one-side t-test (|t| = ,/iVliV"2/(N1 + N2)|pl -p2| / Jpq). 
p=(pl N1+p2N2)/(N1 + N2).q=l -p. degrees of freedom = N1 + 
N2 - 2 (STATISnCA software). 

scattering layers were discontinuous (e.g.. lidar returns at 1.23 and 
3.1 km with respect to the starting distance of the lidargram) (Fig. 2a, 
d). Conversely, lower R, values consistently followed deepening of a 
mid-water (5 to 15 m depth) scattering layer with an S magnitude 
comparable to surface values (i.e., >1 10 sr   '). At a coarser 
horizontal spatial resolution (i.e., 250 m), the median and standard 
deviation of Ri still evidenced the presence of this submerged 
scattering feature (Fig. 2b). This high reflective 'thin' 
layer (thickness-1.5 m) became shallower at the end of the lidar 
sampling segment (i.e., 3.7 to 4.1 km) and caused a drastic increase 
of R, sd (up to 33-fold) and cv (up to 24-fold). In contrast, minimum 
Ri sd (<5 10 3) and cv (<0.5%) were associated with lidar profiles 
having a monotonic decrease of S with depth (0 to 0.5 km) or 
relatively weak (-1.5 10 sr   ') and deep (14-16 m depth) 
scattering layers (e.g., 2 to 2.5 km). Interestingly, maximum values of 
higher moments around R, mean evidenced a horizontal shift of 250 

3. Results 

3./. Correspondence between magnitude and spatial variability of 
spectral reflectance ratios and lidar backscattering signal 

Based on spectral ratios of remote sensing reflectance, the color of 
the ocean was correlated with the magnitude of lidar signal extinction 
and degree of S patchiness along the horizontal component (Table 1). 
A typical example showing the coupling between passive and active 
optical information at different horizontal spatial scales (16 to 250 m) 
is illustrated in Fig. 2. The airborne measurements were obtained 
nearby Whale Island (58.00° N, -152.74° W, Fig. 1) at 22:36 h CMT 
and over relatively deep waters (bottom depth = 120 m). In general, 
R, had a closer association with fine structure changes on 2-D 
distributions of S (i.e., lidargrams) than did R2 (Fig. 2a). Likewise, the 
highest R, values commonly coincided with lidar shots characterized 
by drastic attenuation with depth and where surface (0-5 m depth) 

Table 1 
Correlation (/JS) between airborne passive and active optical parameters. Definitions of 
I. II and III comparisons are defined in Section 2.6 of Methods, p, significant at 95* 
(P<0.05) and 99* (P<0.01) confidence level. 

Comparison     MicroSAS    MicroSAS     FLOE FLOE p, P 
variables     histogram    variables    histogram 

metrics metrics 

I R, it ES(20) 
R, X a X 

R, x K X 

R, i ES (20) 
R, x a X 

R, x K X 

R, Ml £S(20) 
R, Sd a 1 
R, sd K X 

R, sd ES(20) 
R, Sd a 1 

Rj sd K X 

b„(532) X « X 

a (532) it a X 

M532) X a X 

b„(532) X ES(3) 
X £S(5) 
X £s(io) 
X £S{15) 
X ES(20) 

a (532) X £S<3) 
X EM5) 
X £s(io) 
x £S(15) 
it LS(20) 

0.06 0.48 
0.38 < 0.001 
0.31 <0.001 
0.15 0.08 
0.07 0.42 
0.18 0.06 
0.36 <0.001 
0.32 < 0.001 
0.10 0.28 
0.20 0.04 
0.37 < 0.001 
0.06 0.54 
0.15 0.10 
0.11 0.23 
0.09 0.32 
0.09 0.32 
0.11 0.23 
0.07 0.41 
0.15 0.10 
0.41 < 0.001 
0.05 0.56 
0.08 0.37 
0.02 0.81 
0.09 0.29 
0.43 <0.001 

15 = 

0.41 1.23        2.05        1K7        3.69 

Distance aloni: the llijjhl track (km) 

Fig. 2. Spatial relationship between airborne remote sensing reflectance ratios 
(R, and R2) and vertical distribution of lidar backscattering along the (light track, 
a) R„ ratios calculated every 16 m. b) it and sd of K„ ratios calculated every 250 m. 
c) same as b) but for kurtosis and skewness. Gaussian kurtosis (dotted line) and 
skewness (solid line), d) lidar-derived S profiles, S in neperian log scale, distance 
between profiles is 2 m. 
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Table 2 
Principal component analysis between passive and active optical measurements. In 
bold ate indicated those variables with the latgest contribution to each eigenvectot 
(i.e..i|0.3|. 

Sensot Variables Histogtam metrics PCI PC2 pa 

MicroSAS bt (532) 1 0.16 039 -035 
a(532) 1 0.11 0.41 -035 

FLOE ES(3) 026 -033 -0.26 
ES(5) 020 -035 -037 
LSdO) -0A6 -0.08 -030 
ES(15) -0.44 -0.16 -0.28 
LM20) -0.38 -0.21 -an 

to 500 m with respect to R, median and sd (Fig. 2c). Roughly, the 
largest kurtosis and skewness ofR, tended to lead peaks on Rt median 
and sd but this was not always the case (e.g., 17 = 4.6, <// = 1.42, median 
Ri = 1.06, std R, =4 10""3, first bin centered at 0.41 km). 

/?!-a relationships suggested a strong association between waters 
dominated by small-sized particulates and greater vertical attenua- 
tion of the lidar signal (ps = 0.38). As inferred from K, greater 
horizontal patchiness of lidar backscattering was associated with 
water containing larger particles (ps for R] —K= -0.31). The total 
strength of the lidar signal integrated from 2.1 to 20 m was not 
significantly correlated with any spectral Rn ratio. However, the 
magnitude of II5 appeared to be related to the horizontal 
homogeneity of R, and R2 within each bin (Spearman rank correla- 
tions between standard deviation of Rrs ratios and IIS up to 0.36). No 
spatial coherence was detected between magnitude of MicroSAS- 
derived lOPs and lidar attenuation coefficient values (P>0.05, 
Table 1). Neither were magnitudes of Rrs-based lOPs explained by 
the magnitude of differences on S at depths above 20 m. Inverse 
relationships between MicroSAS and FLOE optical signatures were 
clearly manifested at 20 m depth where correlations between bb 

(532), a (532) and S were negative (comparison III in Table 1). 
In this study we applied PCA to identify major sources of spatial 

variability affecting concurrent FLOE and MicroSAS measurements 
(Table 2).The first Principal component (i.e., PCI) was mainly affected 
by variability of the 'deep' (10-20m depth) lidar backscattering. 
Unlike PCI, PC2 and PC3 were mainly affected by variations on 
radiometer-derived lOPs and vertically integrated lidar volume 
backscattering near the surface (3 to 5 m). In PC2, an inverse 
relationship between passive {bb (532), a (532)) and active (USat 3 
and 5 m depth) parameters suggests that horizontal changes of lOPs 
were not associated with inter-bin changes of lidar attenuation (i.e., 
a). PC3 revealed the linkage between of MicroSAS-derived lOPs and 
lidar volume backscattering at intermediate depths (> 3 and < 10 m). 

Interestingly, bb (532) and a (532) had comparable contributions to 
PC3, which indicates a modulation of lidar signal variability due to 
spatial fluctuations of both backscattering and absorption coefficients. 

32. Changes on ocean color statistical moments due to different 'shapes' 
on lidar waveforms 

Spatial patterns of Rre ratios measured in this study differ 
depending on the number of lidar derived backscattering layers 
with depth. One single layer with a homogeneous composition of 
optical constituents (i.e., S only dominated by one exponential decay 
term) extending from the sea surface down to 20 m typically 
corresponded to averaged higher R, (t = - 5.95, P<0.01), and higher 
kurtosis and skewness of R, (>)= 3.20. uV = 0.19) than a vertical multi- 
layered system of S where the amplitude of lidar signal varied with 
depth (Table 3, Fig. 2c-d). Waters without sub-surface S 'bumps' also 
had on average 2-fold lower integrated S over the lidar penetration 
range (t = 5.3, P<0.01). In general, lidar profiles with more complex 
vertical structure produced S with larger coefficient of variability (cv) 
(t = 8.95, P<0.01) and higher N values (t= 10.46, P<0.01) (Table 3). 

In general, locations with deeper S peaks (smoothed to 1-m 
vertical x 250 m horizontal resolution) had lower horizontal disper- 
sion (i.e., cv) (t = 3.16, P<0.01) of targets contributing to S (Table 4). 
These S distributions tended to be more leptokurtic and symmetric, 
and commonly associated with larger R, kurtosis and negative R, 
skewness. The group of lidar profiles classified by 'weak' sub-surface 
maxima shared various characteristics of the 'deep' cluster. Within the 
'weak' lidar peak category, R, histograms had lower skewness (t = 
- 2.58, P= 0.02). the total integrated S between 2.1 and 3 m was 62% 
smaller (t= -3.0, P<0.01), and the S distribution was less patchy 
(t= -1.85, P=0.04) and more homogenous (i.e., lower cv) horizon- 
tally (t= -4.90, P=0.03) than the 'strong' cluster. For those lidar 
profiles with a sub-surface S peak relatively narrow ('thin' scenario), 
R, was higher (t = 2.0, P=0.03), R2 was lower (t= 1.8, P=0.045), S 
vertically integrated per bin tended to be lower (~30%), S skewness 
was close to zero, and horizontal distribution of S was less patchy than 
the 'thick' type lidar peak cluster. Overall, depth and magnitude of S 
sub-surface peaks were inversely correlated (p, = - 0.48, t(N — 2) = 
- 2.52. P= 0.02) (Appendix A. Table Al). 

4. Discussion 

Finding relationships between optical properties derived from Rra 

(A, 0+) and lidar profiles is an important step forward to elucidate 1) 
the effects of vertical structure on ocean color imagery and satellite- 
derived products, and 2) the composition of the lidar signal. The main 
results of this contribution were organized in two sections: A) How 

Table 3 
Aitborne teflectance derived patametets ovet waters with A,i telatively constant (HS) of varying with depth (IS); min and max ate minimum and maximum values, respectively. 
R,. R2. N, and cv (dimensionless), b6(532). a(532) and Kd(532) (m~ '). £5 (m sr ') 10"» a (m" ')• 

R, K, b» (532) 0 (532) K, (532) ES a K cv 

HS min 1.01 ass 0.003 0.06 0.09 3.52 0.13 0.03 0.03 
max 1.39 233 0.011 0.60 0.87 7.08 0.23 1.37 0.18 
n 41 41 41 41 41 41 41 
X 1.18 1.16 0.006 0.16 02A 5.08 0.18 0.56 0.07 

'1 3.20 ±1.87 2.76 ±1.46 7.74 ±4.51 
* 0.19 ±0.96 0.10±1.27 0.23 ±0.59 

IS min 0.96 1.07 4.16 0.62 0.05 
max 1.14 133 24.17 2.21 1.62 
n 23 23 23 23 23 23 23 23 
x 1.04 02 10.11 1.51 0.58 

'1 0.27 ±0.68 2.43 ±0.83 6.59 ±6.48 

* -0.21 ±1.21 -0.02 ±0.45 0.64 ±0.96 
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Table 4 
Airborne reflectance derived parameters over waters with typical shallow', deep', 'weak', strong', thin' and 'thick' lidar profile categories (Section 2.6), Between parentheses is the 
number of bins used in each lidar profile category. 

Category Histogram metrics MicroSAS variables Histogram metrics FLOE variables 

•Shallow'(11) i±sd R> 1.05 i 0.06 Xisd £S 10.8 + 6.4 
n±sd R, 0.15 i 0.81 rjisd S 3.03 i 4.11 
*±sd R, 0.31 i 0.88 ifiisd S 0.82 ±1.15 
X±sd Rj 1.20 i 0.05 Xisd K 7.05 ±11.00 
n±sd R, 2.38 i 0.62 Xisd CV 0.99 ±0.33 
i(<±sd R. - 0.07 i 0.43 

'Deep'(12) X±sd R, 1.04 i 0.05 Xisd Es 95 i 1.8 
r)±sd R, 0.37 i 0.55 nisd s 9.87 i 6.65 
•fr±sd R, -0.69i1Jl </>isd s 0.48 i 0.78 
X±sd Rj 1.23 i 0.07 X±sd K 1.50 ±0.44 
n±sd K, 2.48 i 1.00 Xisd CV 0.37 i 0.22 
ifrisd R, 0.03 i 0.49 

•Weak'(10) X±sd R, 1.05 ±0.06 X±sd Es 75i1.7 
rjisd R, 0.28 ±0.64 rj±sd s 8.69 i 7.33 
*±sd R, -0.87il.17 if-±sd s 0.20 + 0.81 
X±sd ft 1.21 ±0.08 Xisd K 1.50 ±0.49 
rj±sd R.. 2.36±1.11 Xisd cv 0.39 + 0.26 
*±sd R, -0.05 ±0.44 X±sd 

•Strong' (13) X±sd R, 1.04 ±0.05 X±sd Es 12.1 ±5.1 
rj±sd R, 0.26 ±0.73 ij±sd s 458 ±5.50 
*±sd R, 0.30 ±1.00 *isd s 0.99 ±0.96 
X±sd Ra 1.22 ±0.05 Xisd K 4.98 ±5.50 
rjisd R.. 2.49 ±0.56 Xisd CV 0.81 i 0.41 
*±sd R, 0.01 ±0.49 Xisd 

Thin' (9) Xisd R, 1.08 ±0.06 Xisd Es 6.8 i 4.6 
rjisd Ri 0.01 ±0.71 rjisd s 5.03 ±5.04 
*isd R, -0.49 ±1.57 i/<isd s 0.10 ±1.09 
Xisd R. 1.18±0.06 Xisd K 1.56 ±6.49 
nisd R.. 2.34 ±0.64 Xisd CV 0.70 ±0.54 
*isd R.. -0.07 ±036 

Thick'(14) Xisd R, 1.03 ±0.04 Xisd Es 11.1 ±4.5 
rjisd Rt 0.44 ±0.63 nisd s 8.29 ±5.25 
i/>isd R, -0.17 ±1.02 i/>isd s 0.71 ±0.94 
Xisd R.. 1.23 ±0.06 Xisd K 4.41 ±9.31 
rjisd R.. 2.53 i 0.96 Xisd CV 0.50 ±0.28 
tfisd R, 0.01 i 0.52 

strong is the relationship between total lidar volume backscattering 
(magnitude and spatial variability) and lOPs (e.g.. bb and a 
coefficients) as estimated by passive optical systems?, and B) Can 
we obtain information about vertical shape of profiles based on higher 
statistical moments of airborne-derived Rn (A, 0+) (e.g., skewness, 
kurtosis)? 

4.1. Spatial changes on lOPs and vertical attenuation of lidar 
backscattering 

The two-way propagation of lidar signal through a finite aqueous 
optical path involves attenuation of photons due to paniculate and 
dissolved components (see exponential term in Eq. (1)). Our results 
suggested that MicroSAS-derived lOPs (a (532) and bb (532) 
coefficients, and Kd (532)) were weakly correlated (ps up to +0.15, 
P= 0.10) with lidar attenuation coefficient. Based on the FLOE field of 
view, a can be approximated by Kd (532) (Chumside et al., 1998), thus 
a is expected to be primarily influenced by absorption of the lidar 
signal with depth due to background optical constituents (e.g., 
phytoplankton). Tfiat was not the case as R2, an index of phytoplank- 
ton pigment concentration, was uncorrelated with a (Table 2). 
Therefore, a greater phytoplankton absorption of green light (i.e., 
wavelength = 532 nm) did not appear to be a major factor influencing 
the lidar signal extinction. However, based on principal component 
analysis (PC3, Table 2), it can be said that spatial variability of a, bb, 
and Kd derived at a single wavelength covaried with each other but 
there were other factors affecting these relationships in the first two 
orthogonal PCA axis. These additional factors may include differences 
in polarization between sensors (e.g., cross polarized in FLOE, and 

unpolarized in MicroSAS) and phase function variations caused by 
different illumination geometries (e.g., lidar beam normal to the sea 
surface versus zenith angle of sunlight rays). Also, some assumptions 
like vertical homogeneity of IOP distributions and a constant A,t (z) 
may not be valid in some cases, and may introduce bias on Kd and a 
estimates due to different vertical structure of optical properties. 
More research will clarify based on our optical system whether the 
observed poor Kd-a dependency is related to the presence of lOPs 
inhomogeneities and A/t changes along the vertical component and/or 
to variations inherent to each optical sensor. 

Despite the relatively weak connection between magnitude of Rrs- 
derived lOPs and integrated lidar backscattering, higher a or £5 
values were associated with a large variability of R, and R2 within a 
bin (Table 1). In NGOA waters and during the same period of the year, 
Brown et al. (2002) concluded that spatial variability of lidar signal 
appeared to increase with zooplankton density due to a higher degree 
of spatial patchiness and variation in zooplankton density within 
patches. Greater spatial variability on zooplankton distributions has 
been reported in regions characterized by patchy distribution of food 
(e.g., phytoplankton) (Folt & Burns. 1999). Therefore, a larger spatial 
heterogeneity of phytoplankton and other particulates affecting R„ 
ratios can be expected in those waters characterized by more 
heterogeneous spatial distribution patterns of zooplankton. The 
impact of zooplankton (i.e., an important optical component 
affecting S) on phytoplankton (i.e.. an important optical component 
affecting R^ ratios) was presumably evidenced by principal compo- 
nent analysis. The inverse relationship between lOPs and Y.S 
eigenvector's loadings in PC2 was probably indicative of phytoplank- 
ton depletion and consequently a reduction due to zooplankton 
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Fig. 3. Classification or lidar waveforms with a single sub-surface S peak, a) Exponential' versus non-exponential' decrease of S with depth, b) shallow' versus deep', c) weak' versus 
strong', and d)'thin'versus'thick', i! (solid line) and ±2 standard errors (se) (dotted line) of each 5 profile smoothed every 1 m. Between parentheses is it ±se of each peak. The x- 

axis is in log scale with base 10 and 215 (zmax) values were offset in +0.001 to plot it-2 se^O. 

grazing. £ S calculated at 3 and 5 m depths suggested that this effect 
was in part propelled by feeding activity of surface zooplankton layer 
between dawn and dusk. However during the day. vertical migrating 
zooplankton (e.g., copepods) like those inhibiting NCOA are prefer- 
entially situated in deeper waters (negative loadings of US to PCI 
between 10 and 20 m in depth). Thus, a major factor defining lOPs 
decrease due to £S increase was likely the feeding activity of 
zooplankton during the previous night when a larger volume of 
grazers was closer to the ocean surface. Spatial variations of the 
production of pigmented particulates and dissolved colored com- 
pounds affecting a and bb coefficients did not appear to be a major 
mechanisms explaining magnitude of a or J^S values since direct 
relationships between these parameters were secondary as evidenced 
in PC3. 

42. Response of spectra reflectance ratios to variation on vertical 'shape' 
of iidar waveforms 

Spatial patterns of ocean color in our study area changed if sub- 
surface exponential decline ofSas a function of depth was interrupted 
by high scattering layers. This phenomenon was particularly intrigu- 
ing when analyzing the horizontal shift between maximum of low 

(median and sd) and high (t/ and uV) moments of Rt (Fig. 2c-d). It is 
suggested that spatial lagging of maximum i/ and i/< was indicative of 
horizontal 'transitions' of the scattering layer leading to changes on 
depth, amplitude and thickness of sub-surface S layers. Based on 
numerical experiments. Carpenter et al. (2009) proposed that drastic 
temporal variations of skewness and kurtosis can reflect dominance 
transitions in phytoplankton communities. 

Detailed analysis of lidar profile 'shape' parameters derived from 
sub-surface S peaks and Rrs-ratio statistics showed that R, skewness 
was sensitive to deepening of sub-surface S maximum. In general, 
lidar profiles characterized by a single S sill above the water baseline 
had more left-skewed R, distributions (i.e., more negative <|/) when 
this shape feature was located far from the sea surface. Based on light 
propagation models, Kerfoot et al. (2005) calculated a higher R, 
when Karenia brevis. a phototaxic dinoflagellate, was concentrated 
near the ocean surface (0-2 m depth). This R, increase was likely 
reflecting a vertically integrated ocean color signal dominated by 
particles smaller than K. brevis. As large cells (>20um) of K. brevis 
migrate down during morning (5 to 12 am) and late evening (7 pm 
to 5 am), R, decreases reflecting a re-distribution of the surface layer 
composed by 'large' dinoflagellate-derived particles throughout the 
water column. 
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Fig. Al. Vertical structure of density and optical properties during August 2002. a) 
Geographic location of ship-based sampling stations (asterisks), b) chl a. KPM. and 
seawater density. 

In NCOA waters during summer of 2002, ocean color statistics 
based on R^ ratios were not better predictors of g2 than g, and g3 (see 

Eq. (10), Table 4). This limitation was somehow evidenced by those 
studies modeling deep chlorophyll a maximum (DCM) based on 

satellite-derived chlorophyll a concentration (Millan-Nunez et al., 
1997; Sathyendranath et al.. 1995). 

As expected, parallel changes on higher statistical modes of R„ 
ratios and £ S between lidar profiles with contrasting vertical shapes 
were also accompanied by modifications on lidar hand cv. In average, 

lidar waveforms with sub-surface Gaussian peaks had circa of one 
order of magnitude higher power spectrum slope of S (arithmetic 
average of K=4.15±7.9, (1 standard deviation)) and coefficient of 
variation per bin (250 m horizontal x 18 m vertical) with respect to 

those lidar profiles with monotonic decrease of S with depth (Fig. 3). 

Table Al 
Correlation (/>,) between shape' parameters describing lidar waveforms with a single 
sub-surface backscattering maximum. 

Comparison A rf.n-2) 

g2 versus g, 
g2 versus g3 
g, versus g, 

-0.48 
0.28 
0J5 

23 
23 
23 

-2.52 
1J5 
1.72 

0.02 
0.19 
0.10 

J n is equal to the number of observations, r(n - 2) is the Student t-test statistics, p, is 
significant at 95* confidence level when P- 0.05. 

Considering all lidar profiles obtained during August 17 2002 survey, 
our arithmetic average K was 0.61 ±0.44 (1 standard deviation) and 
significantly lower with respect to the mean value (1.49 ± 0.03, near 
surface returns neglected) reported by Churnside and Wilson (2006) 
based on FLOE measurements off the coast of Oregon and Washington 

during July of 2003. As pointed out by Churnside and Wilson (2006) 
most of our K values indicate that lidar backscattering patches were 
smaller with respect to those patches generated by turbulence within 
the inertial subrange or Brownian motion (N= 1.67 to 2.0) but larger 

with respect to spatial fluctuations equally distributed in terms of 
amplitude (i.e., K=0 for white noise). Lower S patchiness in this 
study (i.e., higher K) with respect to that observed by Churnside 
and Wilson (2006) can be attributed to a multiplicity of factors in- 

cluding differences of plankton communities, water stratification, 
primary productivity, and vertical migration patterns between 

sampling locations. 

5. Conclusions 

Relationships between vertical structure of optical properties and 
surface ocean color information were intensively studied during the 
1990s using ocean color imagery and ship-based measurements 
(Millan-Nunez et al., 1997; Sathyendranath et al., 1995). More 
recently, the optical structure of the ocean interior has been mainly 

investigated using in-water unmanned sensors (e.g., gliders, Hodges & 
Frantantoni. 2009, AUVs, Sullivan et al.. 2009). 

In this work, we propose an alternative approach using high 
resolution active (lidar) and passive (ocean color radiometer) optical 
remotely sensed data. Briefly, we propose the use of low and high 
statistical moments of R, to detect S changes along the vertical 
component. Locations characterized by maximum values of S toward 
the sea surface were generally associated with R\ spatial distributions 
characterized by relatively high arithmetic average, standard devia- 
tion, kurtosis and skewness. Conversely, lidar waveforms with 
additional sub-surface backscattering features tended to have lower 
arithmetic average, standard deviation, kurtosis and skewness of R|. 
Whether these optical functionalities between active and passive 
measurements hold in other marine regions or other periods of the 
year is a matter that deserves more study. 

In this study, we demonstrated that passive and active optical 
measurements can be connected based on a single wavelength (i.e., 

A = 532 nm) even though the apparent lack of correlation between a and 
MicroSAS-derived optical properties. The observed relationships between 

Rrs ratios and lidar parameters were influenced by additional variables 
that would require additional experiments involving characterization of 
optical targets, different lidar polarizations and sunlight geometries, and 
simultaneous in situ measurements of vertical distribution of lOPs. 

Observed optical relationships derived from this study represent a 
preliminary step to better describe thin layers and DCM dynamics, 
and help improve QC of ocean color products, at least in coastal waters 
such as those observed in this study, waters characterized by stratified 
conditions, well defined lidar backscattering layers (i.e.. magnitude 
of S maximum comparable to near surface values), and relatively 
high vertically integrated chl a {> 150 mg m 2) within the euphotic 

zone. 
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Appendix A Ship-based profiles of oceanographic variables 

Shipboard profiles of downwelling photosynthetically available 
radiation (PAR) were conducted aboard FV Laura of Kodiak Island and 
during August 16-18 of 2002. The summer survey consisted in 26 
vertical casts encompassing a depth range between 50 and 198 m 
(Fig. Ala). Surface (Ed(PAR, 0+)) and underwater (Ed(PAR,0-)) PAR 
measurements were collected with a Biospherical Instruments, Inc., 
PRR 2600 profiling reflectance radiometer system. Raw E<|(PAR,0-) 
profiles were quality checked by removing spikes and values 
increasing with depth caused by temporal variation of near surface 
(e.g., wave focusing) and above surface (e.g. cloudiness) environ- 
mental factors. A posteriori, downcast E<)(PAR,0-) profiles were 
smoothed every meter based on arithmetic averaging, and ver- 
tically diffuse attenuation coefficient of PAR (KPAR) was calculated 
assuming an exponential decrease (neperian base) of PAR with depth 
(e.g..KPAR(z2)=-log(Ed(PAR.0-)2l/Ed(PAR,0-)z2)/(z2-z,)). 

Temperature, practical salinity, chlorophyll a fluorescence and 
water depth were recorded with a Sea-Bird Electronics, Inc., model 
25-143 CTD. Pre-cruise CTD calibrations were performed at Sea-Bird 
lab (temperature accuracy±0.002 °C, practical salinity accuracyi 
0.005). Magnitude of chl a was estimated from fluorescence mea- 
surements (Seapoint fluorometer. excitation wavelength = 470 nm, 
emission = 685 nm, sensitivity = 0.02 mg m 3, and temperature sta- 
bility of <0.2%/°C). The Seapoint sensor was calibrated in the lab with 
a Turner Designs Model 10-AU fluorometer and using the non- 
acification method (Welschmeyer. 1994). In general terms, the 
median of CTD-derived variables in shelf waters of Afgonak/Kodiak 
Islands evidenced stratified conditions characterized by a developed 
pycnocline in the first 10 m of the water column (i.e., vertical sea- 
water density changes >0.02 kg m 4) associated with drastic increase 
(>100%) of KpAR above that depth and larger chl a toward a water 
depth of7m (up to 8.2 mg m  3) (Fig. Alb). 
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